Working with Files 0351

The command-line arguments are typed by the user and are delimited by a space. The
first argument is always the filename (command name) and contains the program to be
executed. How do these arguments get into the program?

The main() functions which we have been using up to now without any arguments can
take two arguments as shown below:

main(int argc, char * argv[])

The first argument arge (known as argument counter) represents the number of
arguments in the command line. The second argument argv (known as argument vector) is
an array of char type pointers that points to the command line arguments. The size of this
array will be equal to the value of arge. For instance, for the command line

C > exam data results

" the value of arge would be 3 and the argv would be an array of three pointers to strings as
shown below:

argv[0] ---> exam
argv[1l] ---> data
argv[2] ---> results

Note that argv[0] always represents the command name that invokes the program. The
character pointers argv[1] and argv([2] can be used as file names in the file opening
statements as shown below:

.....

Program 11.8 illustrates the use of the command-line arguments for supplying the file
names. The command line is

test ODD EVEN

The program creates two files called ODD and EVEN using the command-line arguments,
and a set of numbers stored in an array are written to these files. Note that the odd
numbers are written to the file ODD and the even numbers are written to the file EVEN.
The program then displays the contents of the files.

352e Object-Oriented Programming with C++

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

int main(int argc, char * argv[])

{ .
int number[9] = {11,22,33,44,55,66,77,88,99};
if(argc 1= 3)

{
cout << "argc = " << argc << "\n";
cout << "Error in arguments \n";
exit(1l);

}

ofstream foutl, fout2;
foutl.open(argv[l]);

if(foutl.fail())

{
cout << "could not open the file"
<< argv[1] << "\n";
exit(1);
}
fout2.open(argv[2]);
if(fout2.fail())
{

n

cout << "could not open the file
<< argv[2] << "\n";
exit(1l);
}

for(int i=0; i<9; i++)

{ .
if(number[i] % 2 == 0)
fout2 << number[i] << " *; // write to EVEN file
else
foutl << number[i] << * "; // write to 0DD file
}

(Contd)

Working with Files ¢ 353

foutl.close();
fout2.close();

ifstream fin;
char = ch;
for(i=1; i<argc; i++)

{

fin.open{argv[il);
cout << "Contents of " << argv[i] << "\n";
do :

{
fin.get(ch); // read a value
cout << ch; // display it

}

while(fin);

cout << "\n\n";

fin.close();

}

return 0;

}

PROGRAM 11.8

The output of Program 11.8 would be:

Contents of 0DD
11 33 55 77 99

Contents of EVEN
22 44 66 88

~ -

& The C++ I/O system contains classes such as ifstream, ofstream and fstream to deal
with file handling. These classes are derived from fstreambase class and are declared
in a header file iostream.

SUMMARY

& A file can be opened in two ways by using the constructor function of the class and
using the member function open() of the class.
While oi)ening the file using constructor, we need to pass the desired filename as a
parameter to the constructor.
The open() function can be used to open multiple files that use the 3ame stream object.

The second argument of the open() function called file mode, specifies the purpose for
which the file is opened.

356 & Object-Oriented Programming with C++

11.8 How many file objects would you need to create to manage the following situations?

(a) To process four files sequentially.

(b) To merge two sorted files into a third file.

Explain.
11.9 Both ios::ate and ios::app place the file pointer at the end of the file (when it is

opened). What then, is the difference between them?
11.10 What does the "current position" mean when applied to files?
11.11 Write statements using seekg() to achieve the following:

(@) To move the pointer by 15 positions backward from current position.

(b) To go to the beginning after an operation is over.

(¢) To go backward by 20 bytes from the end.

(d) To go to byte number 50 in the file.
| 11.12 What are the advantages of saving data in binary form?

11.13 Describe how would you determine number of objects in a file. When do you
need such information?

11.14 Describe the various approaches by which we can detect the end-of-file condition
successfully.

11.15 State whether the following statements are TRUE or FALSE.
(@) A stream may be connected to more than one file at a time.
(b) A file pointer always contains the address of the file.
(c) The statement
outfile.write((char *) & obj,sizeof(obj));
writes only data in obj to outfile.
(d) The ios::ate mode allows us to write data anywhere in the file.
(e) We can add data to an existing file by opening in write mode.
(f) The parameter ios::app can be used only with the files capable of output.

(8) The data written to a file with write() function can be read with the get()
function.

(h) We can use the functions tellp() and tellg() interchangeably for any file.

(1) Binary files store floating point values more accurately and compactly than
the text files.

() The fin.fail() call returns non-zero when an operation on the file has failed.

I Debugging Exercises

11.1 Identify the error in the following program.

#include <iostream.h>
#include <fstream.h>

void main()

